Ein Programmfehler oder Softwarefehler, häufig auch als Bug (bʌg) benannt, bezeichnet im Allgemeinen ein Fehlverhalten von Computerprogrammen. Dies tritt auf, wenn der Programmierer einen bestimmten Zustand in der Programmlogik beim Umsetzen der Vorgaben nicht berücksichtigt hat, oder wenn die Laufzeitumgebung fehlerhaft arbeitet. Weiterhin können auch Unvollständigkeit, Ungenauigkeit oder Mehrdeutigkeiten in der Spezifikation des Programms zu Fehlern führen. In der Praxis treten Computerprogramme ohne Programmfehler selten auf. Statistische Erhebungen in der Softwaretechnik weisen im Mittel etwa zwei bis drei Fehler je 1000 Zeilen Code aus.
Bei der Suche nach den Ursachen für Fehler in Programmen sind sogenannte Debugger hilfreich, mit denen ein Programm Schritt für Schritt ausgeführt werden kann. Die internen Zustände der (Variablen) können hierbei angezeigt werden.
Zur Erfassung und Dokumentation werden sogenannte Bug-Tracker (wie Bugzilla oder Mantis) eingesetzt. Diese nehmen sowohl Fehlerberichte, als auch Verbesserungsvorschläge und Wünsche der Nutzer oder allgemeine Vorgänge auf.
Der Vorgang des Beseitigens eines Programmfehlverhaltens wird umgangssprachlich bugfixing genannt. Das Ergebnis der Verbesserung wird in der Fachsprache als Bugfix, Patch oder Softwarepatch bezeichnet.
Das Wort „Bug“ wurde schon im 19. Jahrhundert für kleine Fehler in mechanischen und elektrischen Teilen verwendet. Knistern und Rauschen in der Telefonleitung würden daher rühren, dass kleine Tiere („Bugs“: engl: Wanze) an der Leitung knabbern. Edison schrieb an seinen Freund Tivadar Puskás, den Erfinder der Telefonzentrale und Gründer einer Telefonzeitung einen Brief über die Entwicklung seiner Erfindungen, in dem er kleine Störungen und Schwierigkeiten als „Bugs“ bezeichnete. “The first step [in all of my inventions] is an intuition, and comes with a burst, then difficulties arise - this thing gives out and [it is] then that 'Bugs' - as such little faults and difficulties are called - show themselves” (Edison 1878[1], deutsch: „Immer wenn man denkt, ein neues Maschinchen läuft wie geschmiert, streuen einem so genannte „Bugs“ Sand ins Getriebe.“) Edison ist zwar nicht Erfinder, aber immerhin Kronzeuge für eine schon damals kursierende Neuschöpfung.
Die Verknüpfung des Begriffs mit Computern geht möglicherweise auf die Computerpionierin Grace Hopper zurück.[2] Sie verbreitete die Geschichte, dass am 9. September 1945 eine Motte in einem Relais des Computers Mark II Aiken Relay Calculator zu einer Fehlfunktion führte. Die Motte wurde entfernt und in das Logbuch geklebt mit den Worten “First actual case of bug being found.” (deutsch: „Das erste Mal, dass tatsächlich ein ‚Käfer‘ gefunden wurde.“). Die Legende von der Begriffsfindung hält sich hartnäckig, obwohl die Logbuch-Eintragung gerade auf die frühere Verwendung des Begriffs hinweist. Zudem irrte Grace Hopper sich hinsichtlich des Jahres: Der Vorfall ereignete sich tatsächlich am 9. September 1947. Die entsprechende Seite des Logbuchs wurde bis Anfang der 1990er Jahre am Naval Surface Warfare Center Computer Museum der US-Marine in Dahlgren, Virginia, aufbewahrt. Zurzeit befindet sich diese Logbuchseite mit der Motte am Smithsonian Institute.
In der Softwaretechnik wird zwischen folgenden Typen von Fehlern in Programmen unterschieden:
Bei manchen Projekten wird nicht der Begriff Bug verwendet, sondern man spricht zum Beispiel von Metabugs, bei denen ein Bug ein Element einer Aufgabenliste darstellt. Bei einigen Projekten spricht man stattdessen auch von „Issues“ (Angelegenheiten), da sich dieser Ausdruck nicht auf Programmfehler beschränkt.
Generell gilt der Leitsatz: Je früher in einem Entwicklungsprozess der Fehler auftritt und je später er entdeckt wird, umso aufwendiger wird es, den Fehler zu beheben.
Am wichtigsten ist eine gute und geeignete Planung des Entwicklungsprozesses. Hierfür gibt es bereits etliche Vorgehensmodelle, aus denen ein geeignetes ausgewählt werden kann.
Ein Problem ist, dass die Korrektheit eines Programms nur gegen eine entsprechend formalisierte Spezifikation bewiesen werden kann. Eine solche Spezifikation zu erstellen kann jedoch im Einzelfall ähnlich kompliziert und fehlerträchtig sein, wie die Programmierung des Programms selbst.
Auch die Entwicklung immer abstrakterer Programmierparadigmen und Programmierstile wie die funktionale Programmierung, objektorientierte Programmierung, Design By Contract und die aspektorientierte Programmierung dienen unter anderem der Fehlervermeidung und Vereinfachung der Fehlersuche. Aus den zur Verfügung stehenden Techniken für das Problem ist eine geeignete auszuwählen. Ein wichtiger Punkt hierbei ist aber auch, dass für das jeweilige Paradigma erfahrene Programmierer zur Verfügung stehen müssen, sonst entsteht oft der gegenteilige Effekt.
Ferner ist es sehr nützlich, von den Entwicklungswerkzeugen möglichst viele Aufgaben der Fehlervermeidung zuverlässig und automatisch erledigen zu lassen. Dies betrifft zum einen bereits Kontrollen wie Sichtbarkeitsregeln und Typsicherheit, sowie die Vermeidung von Zirkelbezügen, die bereits vor der Übersetzung von Programmen vom Compiler übernommen werden können, aber auch Kontrollen, die erst zur Laufzeit durchgeführt werden können, wie zum Beispiel Indexprüfung bei Datenfeldern oder Typprüfung bei Objekten der objektorientierten Programmierung.
Softwareexperten sind sich darüber einig, dass praktisch jedes nicht-triviale Programm Fehler enthält. Deshalb wurden Techniken entwickelt, mit Fehlern innerhalb von Programmen tolerant umzugehen. Zu diesen Techniken gehören defensives Programmieren, Ausnahmebehandlung, Redundanz und die Überwachung von Programmen (z. B. durch Watchdog-timer) sowie die Plausibilisierung des Programmes während der Entwicklung und der Daten während des Programmablaufs.
Darüber hinaus wird eine Reihe fortgeschrittener Anwendungen angeboten, die entweder den Quellcode oder den Binärcode analysieren und versuchen, häufig gemachte Fehler automatisiert zu finden. In diese Kategorie fallen etwa Programme zur Ausführungsüberwachung, die üblicherweise fehlerhafte Speicherzugriffe und Speicherlecks zuverlässig aufspüren. Beispiele sind das frei erhältliche Tool Valgrind und das kommerzielle Purify. Eine weitere Kategorie von Prüfprogrammen umfasst Anwendungen, die Quell- oder Binärcode statisch analysieren und etwa nicht geschlossene Ressourcen und andere Probleme auffinden und melden können. Darunter fallen etwa Findbugs, Lint und Splint.
Es ist durchaus sinnvoll, dass der Test vor dem eigentlichen Programm entwickelt wird. Damit wird erreicht, dass nicht ein Test geschrieben wird, der zu dem bereits geschriebenen Programm passt. Dies kann durch Ermittlung von Testfällen anhand der Spezifikation bereits während der Analyse- bzw. Designphase erfolgen. Die Ermittlung von Testfällen in diesem frühen Stadium der Softwareentwicklung ermöglicht zudem die Prüfung der Anforderungen an das Programm auf Testbarkeit und Vollständigkeit. Die anhand der Spezifikation ermittelten Testfälle stellen die Basis für die Abnahmetests und können kontinuierlich über den gesamten Entwicklungsprozess verfeinert werden.
Manche Softwareanbieter führen Testphasen teilweise öffentlich durch und geben Betaversionen heraus, um die unvorhersehbar vielfältigen Nutzungsbedingungen verschiedener Anwender durch diese selbst testen und kommentieren zu lassen.
Tritt ein Fehler während des Betriebs auf, so muss versucht werden, seine Auswirkungen möglichst gering zu halten und seinen Wirkungskreis durch Schaffung von „Schutzwällen“ oder „Sicherungen“ einzudämmen. Dies erfordert zum einen Möglichkeiten der Fehlererkennung und zum anderen, adäquat auf einen Fehler reagieren zu können.
Ein Beispiel zur Fehlererkennung zur Laufzeit eines Computerprogrammes sind Assertions, mit deren Hilfe Bedingungen abgefragt werden, die gemäß Programmdesign immer erfüllt sind. Weitere Mechanismen sind Ausnahmebehandlungen wie Trap und Exception.
Durch die Implementierung von Proof-Carrying Code kann die Software zur Laufzeit ihre Zuverlässigkeit in gewissem Rahmen gewährleisten und sicherstellen.
Völlige Fehlerfreiheit für Software, die eine gewisse Komplexitätsgrenze überschreitet, ist weder erreichbar noch nachweisbar. Mit steigender Komplexität sinkt die Überblickbarkeit, insbesondere auch, wenn mehrere Personen an der Programmierung beteiligt sind. Selbst teure oder vielfach getestete Software enthält unweigerlich Programmierfehler. Man spricht dann bei gut brauchbaren Programmen nicht von Fehlerfreiheit, sondern von Stabilität und Robustheit. Eine Software gilt dann als stabil bzw. robust, wenn Fehler nur sehr selten auftreten und diese dann nur kleinere Unannehmlichkeiten mit sich bringen und keine größeren Schäden oder Verluste verursachen.
In Spezialfällen ist ein Beweis der Fehlerfreiheit eines Programms möglich. Insbesondere in Bereichen, in denen der Einsatz von Software mit hohen finanziellen, wirtschaftlichen oder menschlichen Risiken verbunden ist, wie z. B. bei militärisch oder medizinisch genutzter Software oder in der Luft- und Raumfahrt, verwendet man zudem eine (formale) Verifizierung genannte Methode, bei der die Korrektheit einer Software formal-mathematisch nachgewiesen wird. Dieser Methode sind allerdings wegen des enormen Aufwands enge Grenzen gesetzt und sie ist daher bei komplexen Programmen praktisch unmöglich durchzuführen (siehe auch Berechenbarkeit). Allerdings gibt es mittlerweile Werkzeuge, die diesen Nachweis laut eigenen Angaben zumindest für Teilbereiche (Laufzeitfehler) schnell und zuverlässig erbringen können.
Neben der mathematischen Verifizierung gibt es noch eine praxistaugliche Form der Verifizierung, die durch die Qualitätsmanagement-Norm ISO 9000 beschrieben wird. Bei ihr wird nur dann ein Fehler konstatiert, wenn eine Anforderung nicht erfüllt ist. Umgekehrt kann demnach ein Arbeitsergebnis (und damit auch Software) als fehlerfrei bezeichnet werden, wenn es nachweisbar alle Anforderungen erfüllt. Die Erfüllung einer Anforderung wird dabei durch Tests festgestellt. Wenn alle Tests das erwartete Ergebnis bringen, ist eine Anforderung erfüllt.
Die Folgen eines Programmfehlers können außerordentlich sein und sich in vielfältiger Weise zeigen. Die folgende Liste ist zeitlich geordnet:
Manche Programmfehler sind nur äußerst schwer oder gar nicht zuverlässig reproduzierbar. Bei der Wiederholung eines zuvor gescheiterten Vorgangs unter scheinbar unveränderten Bedingungen ist die Wahrscheinlichkeit hoch, dass sich diese Fehler nicht erneut äußern. Es gibt zwei mögliche Gründe für dieses Verhalten: Zum einen kann es zu Verzögerungen zwischen der Fehleraktivierung und dem letztlich auftretenden Problem beispielsweise einem Programmabsturz kommen, welche die tatsächliche Ursache verschleiern und deren Identifikation erschweren. Zum anderen können andere Elemente des Softwaresystems (Hardware, Betriebssystem, andere Programme) das Verhalten der Fehler in dem betrachteten Programm beeinflussen. Ein Beispiel hierfür sind Fehler, die in nebenläufigen Umgebungen mit mangelnder Synchronisation (genauer: Sequentialisierung) auftreten. Wegen der hieraus folgenden Wettlaufsituationen (Race Conditions) können die Prozesse in einer Reihenfolge abgearbeitet werden, welche zu einem Laufzeitfehler führt. Bei einer Wiederholung der gleichen Aktion ist es möglich, dass die Reihenfolge der Prozesse unterschiedlich ist und kein Problem auftritt.
Dieser Artikel basiert auf dem Artikel Programmfehler aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.